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Sloan Digital SkySurvey

“The Cosmic Genome Project”

Started in 1992, finished in 2008

« Data is public
— 2.5 Terapixels of images => 5 Tpx of sky
— 10 TB of raw data => 100TB processed
— 0.5 TB catalogs => 35TB in the end

« Database and spectrograph
built at JHU (SkyServer)

e Now SDSS-3/4 data served from JHU
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Wide Range of Science
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« 5,000 publications, 200,000 citations
« More papers from outside the collaboration

 From cosmology/LSS to galaxy evolution, quasars,
stellar evolution, even time-domain

« Combination of 5-band photometry and matching
spectroscopy provided unique synergy

« Qverall, seeing not as good as originally hoped for,
but systematic errors extremely well understood

« Very uniform, statistically complete data sets
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e Broad Impact of SDSS =
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« Changed the way we do astronomy

* Remarkably fast transition seen for the community
« Speeded up the first phase of exploration

« Wide-area statistical queries easy

« Multi-wavelength astronomy is now the norm

« SDSS earned the TRUST of the community

« Enormous number of projects, way beyond original
vision and expectation

« Many other surveys now follow
« Established expectations for data delivery
 Serves as a model for other communities of science




THOUSAND YEARS AGO
science was empirical
describing natural phenomena =

LAST FEW HUNDRED YEARS a 47Gp o2

: : ~ | = K=
theoretical branch using models, 3 2
generalizations

LAST FEW DECADES
a computational branch simulating
complex phenomena

TODAY

data intensive science, synthesizing theory,
experiment and computation with statistics
» new way of thinking required!




PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY
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« Data Explosion: science is becoming data driven
 Itis becoming “too easy” to collect even more data

* Robotic telescopes, next generation sequencers,
complex simulations

« How long can this go on?

* “Do | have enough data or would | like to have
more?”

 No scientist ever wanted less data....
« But: Big Data is synonymous with Dirty Data

« How can we decide how to collect data that is more
relevant ?




LSST PanSTARRS
8.4m 3.2Gpixel 1.8m 1.4Gpixel




Survey Trends
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Decision Making in Science =
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« Traditionally: human scientists decide what
experiments to do next

« SDSS Example: the Black Book

— Optimization and tradeoffs were done by committee
— In the end >5000 publications, many outside the team
— Many science projects were never thought of

« Given the huge amounts of data, the possible
number of new experiments and analyses explodes

 But: we cannot do it all, we cannot foresee it all!
* Need to involve intelligent tools aiding the scientist




What Will the 5" Paradigm Be

* Next step: not just discovery but experiment design!!!

* Probabilistic approach to everything
« Accelerated design cycles

« Clear cost function driving tradeoffs
 How to collect more relevant data?

The systematic involvement of computational statistics and
optimizations in the design of the next generation of
“experiments”:

prediction/Inference/UQ + design/synthesis/fabrication




How to Do with Less Data?

« Collect less but more relevant data
— Use active learning
— Compressive sensing: nature Is sparse
— Random sampling of long tails: stratified sampling
« Streaming, sublinear randomized algorithms
— Streaming look at simulations as well
— Not just sequence of snapshots, but world-lines

« Automation, machine learning to find relevant data




Probabilistic Approach

« Time-to-result: how to trade speed for accuracy
— statistical and algorithmic challenges
— statistical vs systematic errors
— bestresult in 1 min, 1 hour, 1 day
— Cost of computing is becoming a significant factor

e Simulations: how to do better UQ

— from single large realization to ensembles
(Coyote Universe, INDRA)

— sparsely sampled outputs

« Experiments

— from driven by “feeling” (and experience) to objective
design based on statistics, automated choice of parameters

— Ensembles of experiments optimally sampling parameters




« Given our existing data, of all possible experiments
which would yield the most new information?

* Ross King (2004) drug design study:
— Adam, the Robot Scientist

« Personalized Medicine
* Finding patterns in large scale simulations
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Applications of ML to Turbulence
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Renyi
divergence

\orticity
- -
clustering,

Similarity between regions > < Wclassification,
danomaly detection

J. Schneider, B. Poczos, CMU —
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Nature is Sparse
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Many natural processes are dominated by a few
processes and described by a sparse set of
parameters

Compressed Sensing has emerged to identify in high
dimensional data sets the underlying sparse
representation (Candes, Donoho, Tao, et al)

This enables signal reconstruction with much less
data!

The resolution depends not on the pixel count but on
the information content of an image...



Compressed Sensing
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« Example: sparse signal sampled randomly in Fourier

space

Sparse Signal

k-space of Sparse Signal

(a)

o equispaced' u_nder-sampl‘-ng |

e random under-sampling |
(b)
Result of equispaced 8-fold under-sampling Result of random 8-fold under-sampling
w—— random under-sampling
= = original
e @Quispaced under-sampling
= = griginal
(d)

(c)

Donoho, Candes, Tao...




Principal component pursuit
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« Low rank approximation of data matrix: X
« Standard PCA:

min [X —E|  subject to rank(E) <k

— works well if the noise distribution is Gaussian
— outliers can cause bhias

* Principal component pursuit

min [A|  subjectto X =N +A, rank(N) <k

— “sparse” spiky noise/outliers: try to minimize the number
of outliers while keeping the rank low

— NP-hard problem

e The L1 trick: min(HNH*+/1HAH1) subject to X =N + A

N,A

— numerically feasible convex problem (Augmented Lagrange Multiplier)

min (HNH* +AHAH1) subjectto X —(N+A)|, <&

* E. Candes, et al. “Robust Principal Component Analysis”. preprint, 2009.
Abdelkefi et al. ACM CoNEXT Workshop (traffic anomaly detection)



Testing on Galaxy Spectre
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B.@8083

e Slowly varying continuum +
absorption lines

B.e084 -

e Highly variable “sparse”
emission lines

e This is the simple version of
PCP: the position of the lines
are known o.sons |

* but there are many of
them, automatic
detection can be useful  ,n. :

DATA:
* spiky noise can bias Streaming robust PCA implementation for
standard PCA galaxy spectrum catalog (L. Dobos et al.)

SDSS 1M galaxy spectra
Morphological subclasses
Robust averages + first few PCA directions
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* |nitialization
— Eigensystem of a small, random subset
— Truncate at p largest eigenvalues C ~ EPAPEE

~* Incremental updates

— Mean and the low-rank A matrix
— SVD of A yields new eigensystem

C ~yEyApE, +(1—y)yy'
 Randomized sublinear algorithm!

Mishin, Budavari, Ahmad and Szalay (2012)
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Principal component pursuit:

B, 88835

B.88832
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Low rank
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Numerical Simulations
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HPC is an instrument in its own right
— Soon largest simulations exceed several petabytes
— Directly compare to the experiments

Need public access to the best and latest
— Cannot just do in-situ analyses

Also need ensembles of simulations for UQ

Creates new challenges
— How to access the data?
— What is the data lifecycle?
— What are the analysis patterns?
— What architectures can support these?
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Immersive Turbulence
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“... the last unsolved problem of classical physics...” Feynman

« Understand the nature of turbulence

— Consecutive snapshots of a large
simulation of turbulence: 30TB

— Treat it as an experiment, play with
the database!

— Shoot test particles (sensors) from
your laptop into the simulation,
like in the movie Twister

— 50TB MHD simulation
— Channel flow 100TB, MHD 256TB

 New paradigm for analyzing simulations!

with C. Meneveau (Mech. E), G. Eyink (Applied Math), R. Burns (CS)
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In 2005 cosmological simulations had 101° particles and
produced over 30TB of data (Millennium)

http://gavo.mpa-garching.mpg.de/Millennium/
« Build up dark matter halos

« Track merging history of halos

« Use it to assign star formation history

« Combination with spectral synthesis

« Realistic distribution of galaxy types

Today: simulations with ~10%2 particles and almost PB of output are
under way (MillenniumXXL, DEUS, Silver River, etc)

« Hard to analyze the data afterwards -> need DB
 What is the best way to compare to real data?



http://gavo.mpa-garching.mpg.de/Millennium/
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Similarities between Turbulence/CFD, N-body, ocean
circulation and materials science

Differences as well in the underlying data structures
— Particle clouds / Regular mesh / Irregular mesh

Innovative access patterns appearing

— Immersive virtual sensors/Lagrangian tracking

— Posterior feature tagging and localized resimulations

— Machine learning on HPC data

— Joins with user derived subsets, even across snapshots

— Data driven simulations/feedback loop/active control of sims

On Exascale everything will be a Big Data problem
Memory footprint will be >2PB
With 5M timesteps => 10,000 Exabytes/simulation

28



LHC has a single data source, $$$$$

Multiple experiments tap ™ oms
into the beamlines - B
They each use in-situ hardware 2
triggers to filter data

— Only 1in 10M events are stored

Clesning Cleaning

— Not that the rest is garbage, ALCE N LHCb
just sparsely sampled o ATLAS ¢

Resulting “small subset™ analyzed many times off-line
— This is still 10-100 PBs

Keeps a whole community busy for a decade or more
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Exascale computer running a community simulation
Many groups plugging their own “triggers” (in-situ),
the equivalents of “beamlines”

— Keep very small subsets of the data

— Plus random samples from the field

— Immersive sensors following world lines or light cones

— Burst Buffer of timesteps: save precursor of events

Sparse output analyzed offline by broader community

Cover more parameter space and extract more
realizations (UQ) using the saved resources



Disruptive Technologies

NEWS

Samsung unveils 15TB SSD based on densest flash
memory

——  MORE LIKE THIS

Samsung releases world's first
2TB consumer SSDs

Intel Xpoint 3D SSD
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Computations even closer to the data
Cannot afford to store all the incoming data
Razor sharp tradeoffs, based on algorithms
Sharp awareness of systematic errors
Active learning, compressed sensing

What comes after Data Driven Discoveries
(the 4t Paradigm)?

Exascale simulations become a challenge

Human aided machine learning becomes
part of the scientific process

Data deluge still getting bigger...
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“My next big project is brakes.”




